Hatice Gelener Ilk Ogretim Okulu
Daha İyi Hizmet Alabilmeniz İçin Üye Olunuz...

ÖZDEŞLİKLER ve ÇARPANLARA AYIRMA

Önceki başlık Sonraki başlık Aşağa gitmek

ÖZDEŞLİKLER ve ÇARPANLARA AYIRMA

Mesaj tarafından Arif TAS Bir Ptsi Ara. 29, 2008 12:38 pm

ÖZDEŞLİKLER ve ÇARPANLARA AYIRMA ( I )


Tanım : Sabit olmayan, birden fazla polinom un çarpımı biçimin
de yazılamayan polinomlara indirgenemeyen polinomlar denir.
Baş katsayısı bir olan indirgenemeyen polinomlar
Asal polinomlar denir.


* P(x) = x2 + 4 , Q(x) = 3x2 + 1, R(x) = 2x – 3 , T(x) = - x + 7
Polinomları indirgenemeyen polinomlar dır.

P(x) = x2 + 4 baş katsayısı 1 olduğundan asal polinom dur.


Tanım : İçindeki değişkenlerin alabileceği her değer için doğru
olan eşitliklere özdeşlik denir.

* a) x3 (x2 – 2x) = x5 – 2x4 b) a2 (x + y)2 = a2 x2 + a2 y2 özdeşlik
c) a2 (x +y)2 = a2 x2 + a2 y2 özdeşlik değildir.


ÖNEMLİ ÖZDEŞLİKLER



I) Tam Kare Özdeşliği:
a) İki Terim Toplamının Karesi : (a + b)2 = a2 + 2ab + b2
b) İki Terim farkının Karesi : (a – b)2 = a2 – 2ab + b2

İki terim toplamının ve farkının karesi alınırken; birincinin
karesi,birinci ile ikincinin iki katı, ikincinin karesi alınır.

c) Üç Terim Toplamının Karesi:
(a +b + c)2 = a2 + b2 + c2 + 2 (ab + ac + bc) şeklindedir.



II) İki Terim Toplamı veya Farkının Küpü :

a) İki Terim Toplamının Küpü : (a + b)3 = a3 + 3a2b + 3ab2 + b3
b) İki Terim Farkının Küpü : (a – b)3 = a3 – 3a2b + 3ab2 – b3

Birinci terimin küpü;( ) birincinin karesi ile ikincinin çarpımının 3 katı, birinci ile ikincinin karesinin çarpımının 3 katı,( ) ikin
cinin küpü biçimindedir. Bu açılımlara Binom Açılımıda denir

Not:. Paskal Üçgeni kullanılarak 4.,5.,6.,...Dereceden iki terimli
lerin özdeşliklerini de yazabiliriz.



III) İki Kare Farkı Özdeşliği: (a + b) (a – b) = a2 – b2

İki terim toplamı ile farkının çarpımı; birincinin karesi ile
ikincinin karesinin farkına eşittir.



IV) xn + yn veya xn - yn biçimindeki polinomların Özdeşliği :

i) İki küp Toplam veya Farkı : a3 + b3 = (a + b) (a2 – ab + b2)
a3 – b3 = (a – b) (a2 + ab + b2)

ii) a4 + b4 = (a + b) (a3 – a2b + ab2 – b3)
a4 – b4 = (a2 + b2) (a + b) (a – b)

iii) a5 + b5 = (a + b) (a4 – a3b + a2 b2 – ab3 + b4)
a5 – b5 = (a – b) (a4 + a3b + a2 b2 + ab3 + b4)

iv) a6 + b6 = (a + b) (a5 – a4b + a3 b2 – a2b3 + ab4 – b5)
a6 – b6 = (a – b) (a2 + ab + b2) (a+ b) (a2 + ab + b2)

v) a7 + b7 = (a + b) (a6 – a5b + a4b2 – a3b3 + a2b4 – ab5 + b6)
a7 – b7 = (a – b) (a6 + a5b + a4b2 + a3b3 + a2b4 + ab5 + b6)



Özdeşlikleri aşağıdaki şekilleriyle düzenleyerek kullanabiliriz

1) x2 + y2 = (x + y)2 – 2xy

2) x2 + y2 = (x – y)2 + 2xy

3) (x – y)2 = (x + y)2 – 4xy
avatar
Arif TAS
Kral Üye
Kral Üye

Erkek
Mesaj Sayısı : 506
Yaş : 21
Nerden : ŞANLIURFA
Okul-Sınıf : Hatice Gelener - 8/B
Kişisel İleti : Bu Site Bağımlılık Yapar ...! : )
Rep : 1
Tecrübe : 32458
Kayıt tarihi : 04/12/08

Kullanıcı profilini gör http://haticegelener.forumo.biz

Sayfa başına dön Aşağa gitmek

Geri: ÖZDEŞLİKLER ve ÇARPANLARA AYIRMA

Mesaj tarafından Misafir Bir Salı Ara. 30, 2008 2:07 pm

paylasım için tşk..
avatar
Misafir
Misafir


Sayfa başına dön Aşağa gitmek

Önceki başlık Sonraki başlık Sayfa başına dön


 
Bu forumun müsaadesi var:
Bu forumdaki mesajlara cevap veremezsiniz